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The freezing of magnetic field flux into an electron fluid is examined during fast magnetic
field evolution that results from the nonlinear skin effect. First, fast magnetic field

evolution, which does not involve flux penetration, is shown to follow naturaily from the
frozen-in law. Second, fast evolution is analyzed in which large deviations from the frozen-in
law (large flux penetration) occur in the presence of small (but nonzero) resistivity. A

direct relation is shown between the deviation from the frozen-in law and the energy dissipated

per electron along its orbit.

The evolution of the magnetic field in plasmas of zero
resistivity is constrained by the freezing of the magnetic
field flux into the electron fluid. This constraint is expected
to restrict the evolution of the magnetic field in short du-
ration plasmas of low resistivity, such as in a plasma open-
ing switch."”” A mechanism for fast magnetic field evolu-
tion in low-resistivity plasmas has been explored
recently.>® The fast evolution is induced by density gradi-
ents or by magnetic field curvature and is called the non-
linear skin effect.®>® Questions related to this issue still
remain. Is the fast evolution associated with a true flux
penetration? Could a fast flux penetration occur when the
resistivity is small? If indeed there is a fast flux penetration,
is it associated with a large energy dissipation? The pur-
pose of this Brief Communication is to present two explicit
examples that should help clarify these issues. First, a case
in which fast magnetic field evolution results naturally
from the frozen-in law is discussed and no flux penetration
occurs. Then a second case is discussed, in which large
deviations from the frozen-in law and fast flux penetration
occur even though the resistivity is small. In this case, the
flux penetration is shown to be related directly to the en-
ergy dissipated.

The familiar frozen-in law is obtained when Ohm’s
law, in the form

v.XB

E=nji——"—, (1

is combined with Faraday’s law, giving

JdB
‘a—t=VX(VeXB) —cenVXj. (2)
Here B is the magnetic field, j is the current, v, is the
electron flow velocity, 7 the resistivity, and ¢ the velocity of
light in vacuum. In the limit of =0 this equation de-
scribes the freezing of the magnetic field into the electron
fluid. When 70, the magnetic field penetrates the elec-
tron fluid.
For simplicity, slab geometry is used and it is assumed
that 8/0z=0 and B=e,B(x,p,t). Equation (2) becomes
dB
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where d/dt=3/8t+ vV is the convective derivative. Com-
bining Eq. (3) with the continuity equation yields

d(B cz'r]AB 4
dt(n)_41rn ’ 4)

Here n is the electron density and A is the Laplacian. In
this derivation Ampeére’s law was used and the displace-
ment current was neglected. In the limit of =0, the
frozen-in law results in the familiar constancy of B/n along
an electron orbit. In the cylindrical case with azimuthal
symmetry, the magnetic field is B=?gB(r,z,t), and the
quantity B/rn is constant along an electron orbit.” It is
emphasized that the constancy of B/n along an electron
orbit and the constancy of B along a current line do not
imply that electrons have to move along equidensity con-
tours in order to satisfy the frozen-in law. If the density
changes along the electron orbit, the magnetic field could
change in time, so that B/n remains constant along the
electron orbit. Therefore, if an electron moves from a low-
density region to a high-density region, the magnetic field
grows in time.

We examine the freezing of the flux, or the constancy
of B/n along an electron orbit, in short duration plasma, in
which the ions are assumed to be immobile so that the Hall
field is dominant. This assumption applies when the time
scales of interest are short compared with the ion response
time. As a result, the electron velocity is v, = —j/en. In
the particular case that

n=n(y)=1/ay, (5)

the magnetic field evolution is governed by Burgers’ equa-
tion

W dre ok dm\a2 T Y (©)
Here, —e is the electron charge. Two cases of fast magnetic
field evolution will now be described. In the first case, B/n
remains constant along an electron orbit and the fast mag-
netic field evolution results naturally from the frozen-in
law with 77=0. In the second case, a small resistivity allows
a large deviation from the frozen-in law, and B/n changes

3B caB B cln(azB aZB)
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significantly during the fast magnetic field evolution. Mag-
netic field penetration occurs, therefore, only in the second
case.

In the first case,

x
B(xp,1) =T1T (ca/are)i]’ (7)
so that the electron velocity v,= —j,/en is
dy cay
(8)

dt (4me+cat)’
where j,= —(¢/4m)(dB/dx). Along the electron orbit,

y(2) =p(t=0)[1+ (ca/dme)t], (9
and the frozen-in law is satisfied, since
B(t)/n(t) =xay(0) =const, (10)

where electrons move only in the y direction so x is con-
stant. The decrease in time of the magnetic field results
naturally from the frozen-in law. The fast magnetic field
evolution does not involve flux penetration. The electron
moves from a high-density region to a low-density region
and at the same time the magnetic field decreases, so that
B/n remains constant along the electron orbit. A qualita-
tive discussion of the equivalent effect in cylindrical geom-
etry is given in Ref. 6.

In the second case, there is a large deviation from the
frozen-in law (large flux penetration). The shock solution

of Eq. (6) is given by
B 5o
" 14exp{ (Bea/2mec) [x— (cBya/8me)t]}
The electrons move in the y direction only. Their orbit is

again found from v,=—j,/en and
— (¢Byat/8me) (0B/dx) = (3B/at), yielding

() =y(t))exp{ —(2/B,) [ B(t,) —B(#) 1}, (12)
where the subscripts 1,2 denote the times ¢#,,7, at which the
quantities are evaluated. It is clear that B/n is not constant
along an electron orbit. In fact,

B, B 1

(11)

(13)

2
P B2 CXP(EO(BZ—BI))——BI .

The change in the density that an electron experiences
found for B,=0, B,=B8, is

n/ny=y,/y=exp(—2). (14)

In this case of a large deviation from the frozen-in law, the
magnetic field does penetrate the electron fluid.
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A direct relation between the deviation from the
frozen-in law (the flux penetration) and the energy dissi-
pation per electron along its orbit, is found by integrating
the right-hand side of Eq. (4) along an electron orbit. The
integration across the shock yields

Bl 87 [~ dt 2 15)
= -E;f_w LA ¢

The right-hand side equals the rate of energy dissipation
per electron along its orbit multiplied by 8w/B, The
square brackets on the left-hand side denote the jump of
the quantity in brackets across the shock. A large deviation
from the frozen-in law (large flux penetration) is associ-
ated with a large energy dissipation. Even though the re-
sistivity is small, the resistance and the associated dissipa-
tion are large. The resistance is large because of the narrow
shock layer. Rewriting Eq. (15) yields

w dt , B}

" f o n Y 8w’

In the region behind the shock front, the energy dissipated
by Joule heating equals the deposited magnetic field en-
ergy. This energy equipartition is analyzed using a fluid
model in Ref. 8.

In summary, a fast magnetic field evolution is possible
even in plasmas of low resistivity. The frozen-in law, which
is valid at the zero resistivity limit, allows certain forms of
fast magnetic field evolution with no flux penetration. In a
different form of evolution, the shock propagation, large
deviations from the frozen-in law and large flux penetra-
tion is associated with a large energy dissipation. A direct
relationship between the deviation from the frozen-in law
and the energy dissipated per electron along its orbit is also
presented.
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