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The freezing of magnetic field flux into an electron fluid is examined during fast magnetic 
field evolution that results from the nonlinear skin effect. First, fast magnetic field 
evolution, which does not involve flux penetration, is shown to follow naturally from the 
frozen-in law. Second, fast evolution is analyzed in which large deviations from the frozen-in 
law (large flux penetration) occur in the presence of small (but nonzero) resistivity. A 
direct relation is shown between the deviation from the frozen-in law and the energy dissipated 
per electron along its orbit. 

The evolution of the magnetic field in plasmas of zero 
resistivity is constrained by the freezing of the magnetic 
field flux into the electron fluid. This constraint is expected 
to restrict the evolution of the magnetic field in short du- 
ration plasmas of low resistivity, such as in a plasma open- 
ing switch.‘P2 A mechanism for fast magnetic field evolu- 
tion in low-resistivity plasmas has been explored 
recently.3-8 The fast evolution is induced by density gradi- 
ents or by magnetic field curvature and is called the non- 
linear skin effect3-“’ Questions related to this issue still 
remain. Is the fast evolution associated with a true flux 
penetration? Could a fast flux penetration occur when the 
resistivity is small? If indeed there is a fast flux penetration, 
is it associated with a large energy dissipation? The pur- 
pose of this Brief Communication is to present two explicit 
examples that should help clarify these issues. First, a case 
in which fast magnetic field evolution results naturally 
from the frozen-in law is discussed and no tlux penetration 
occurs. Then a second case is discussed, in which large 
deviations from the frozen-in law and fast flux penetration 
occur even though the resistivity is small. In this case, the 
flux penetration is shown to be related directly to the en- 
ergy dissipated. 

The familiar frozen-in law is obtained when Ohm’s 
law, in the form 

is combined with Faraday’s law, giving 

aB 
z=VX (v,XB) -qVxj. (2) 

Here B is the magnetic field, j is the current, v, is the 
electron flow velocity, 71 the resistivity, and c the velocity of 
light in vacuum. In the limit of q=O this equation de- 
scribes the freezing of the magnetic field into the electron 
fluid. When y#O, the magnetic field penetrates the elec- 
tron fluid. 

For simplicity, slab geometry is used and it is assumed 
that a/az=O and B=gp(x$,t). Equation (2) becomes 

dB 
z= -BV*v,--cq(VXj), (3) 

where d/dt = d/at + ~~4’ is the convective derivative. Com- 
bining Eq. (3) with the continuity equation yields 

d B c*q 
-- =- 

0 dt n 4rrn 
AB. (4) 

Here n is the electron density and A is the Laplacian. In 
this derivation Ampere’s law was used and the displace- 
ment current was neglected. In the limit of q=O, the 
frozen-in law results in the familiar constancy of B/n along 
an electron orbit. In the cylindrical case with azimuthal 
symmetry, the magnetic field is B=g&( r,z,t), and the 
quantity B/m is constant along an electron orbit.’ It is 
emphasized that the constancy of B/n along an electron 
orbit and the constancy of B along a current line do not 
imply that electrons have to move along equidensity con- 
tours in order to satisfy the frozen-in law. If the density 
changes along the electron orbit, the magnetic field could 
change in time, so that B/n remains constant along the 
electron orbit. Therefore, if an electron moves from a low- 
density region to a high-density region, the magnetic field 
grows in time. 

We examine the freezing of the flux, or the constancy 
of B/n along an electron orbit, in short duration plasma, in 
which the ions are assumed to be immobile so that the Hall 
field is dominant. This assumption applies when the time 
scales of interest are short compared with the ion response 
time. As a result, the electron velocity is v, = -j/en. In 
the particular case that 

n=n(y) = l/av, (5) 

the magnetic field evolution is governed by Burgers’ equa- 
tion 

f!+ggd$gg+$,. (6) 

Here, -e is the electron charge. Two cases of fast magnetic 
field evolution will now be described. In the first case, B/n 
remains constant along an electron orbit and the fast mag- 
netic field evolution results naturally from the frozen-in 
law with v= 0. In the second case, a small resistivity allows 
a large deviation from the frozen-in law, and B/n changes 
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significantly during the fast magnetic field evolution. Mag- 
netic field penetration occurs, therefore, only in the second 
case. 

In the first case, 

so that the electron velocity u,,= -j/en is 

d. CffY 
Z=(47re+cat)’ 

(7) 

(8) 

where j,,= - (c/4n) (dB/ax). Along the electron orbit, 

y(t)=y(t=O)[l+(ca/4re)t], 

and the frozen-in law is satisfied, since 

(9) 

B(t)/n(t) =xay(O) =const, (10) 

where electrons move only in the y direction so x is con- 
stant. The decrease in time of the magnetic field results 
naturally from the frozen-in law. The fast magnetic field 
evolution does not involve flux penetration. The electron 
moves from a high-density region to a low-density region 
and at the same time the magnetic field decreases, so that 
B/n remains constant along the electron orbit. A qualita- 
tive discussion of the equivalent effect in cylindrical geom- 
etry is given in Ref. 6. 

In the second case, there is a large deviation from the 
frozen-in law (large flux penetration). The shock solution 
of Eq. (6) is given by 

Bo 
B=l +exp( (B@/2r]ec) [x- (cBoa/8re)t] 1’ (11) 

The electrons move in the y direction only. Their orbit is 
again found from vu= -j/en and 
- (cBg/8re) (dB/ax) = (aB/dt), yielding 

y(t2)=y(tt)exp~-(2/Bo)[B(f2)--B(tl) I), (12) 

where the subscripts 1,2 denote the times tl,f2 at which the 
quantities are evaluated. It is clear that B/n is not constant 
along an electron orbit. In fact, 

$%=i[B2 exp($B,-B,)) -BI]. (13) 

The change in the density that an electron experiences 
found for B, = 0, B2 = B. is 

nl/n2=y2/y1=exp( -2). (14) 

In this case of a large deviation from the frozen-in law, the 
magnetic field does penetrate the electron fluid. 

A direct relation between the deviation from the 
frozen-in law (the flux penetration) and the energy dissi- 
pation per electron along its orbit, is found by integrating 
the right-hand side of Eq. (4) along an electron orbit. The 
integration across the shock yields 

(15) 

The right-hand side equals the rate of energy dissipation 
per electron along its orbit multiplied by 87r/B,-,. The 
square brackets on the left-hand side denote the jump of 
the quantity in brackets across the shock. A large deviation 
from the frozen-in law (large flux penetration) is associ- 
ated with a large energy dissipation. Even though the re- 
sistivity is small, the resistance and the associated dissipa- 
tion are large. The resistance is large because of the narrow 
shock layer. Rewriting Eq. ( 15) yields 

n 
s 

m $j&. 
--Da 

In the region behind the shock front, the energy dissipated 
by Joule heating equals the deposited magnetic field en- 
ergy. This energy equipartition is analyzed using a fluid 
model in Ref. 8. 

In summary, a fast magnetic field evolution is possible 
even in plasmas of low resistivity. The frozen-in law, which 
is valid at the zero resistivity limit, allows certain forms of 
fast magnetic field evolution with no flux penetration. In a 
different form of evolution, the shock propagation, large 
deviations from the frozen-in law and large flux penetra- 
tion is associated with a large energy dissipation. A direct 
relationship between the deviation from the frozen-in law 
and the energy dissipated per electron along its orbit is also 
presented. 
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